US009229811B2

a2 United States Patent

Alexeev et al.

US 9,229,811 B2
Jan. 5, 2016

(10) Patent No.:
(45) Date of Patent:

(54) FOLDED CODES FOR CORRECTION OF
LATENT MEDIA ERRORS
(71) Applicant: EMC Corporation, Hopkinton, MA
(US)

(72) Inventors: Alexander N. Alexeev, Saint-Petersburg
(RU); Peter V. Trifonov,
Saint-Petersburg (RU)

(73)

Assignee: EMC Corporation, Hopkinton, MA

(US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 87 days.

@
(22)

Appl. No.: 14/167,389

Filed: Jan. 29, 2014

(65) Prior Publication Data

US 2014/0380127 Al Dec. 25, 2014

(30) Foreign Application Priority Data

Jun. 20,2013 (RU) 2013128347

(51) Imt.ClL
G11C 29/00
GO6F 11/10
U.S. CL
CPC GO6F 11/1076 (2013.01)
Field of Classification Search

None

See application file for complete search history.

(2006.01)
(2006.01)
(52)

(58)

(56) References Cited
U.S. PATENT DOCUMENTS
6,529,997 B1* 3/2003 Debiczetal. 711/114
8,850,296 B2* 9/2014 Weingarten et al. ... 714/781
2003/0070042 Al* 4/2003 Byrdetal. 710114
2005/0138284 Al* 6/2005 Cohnetal. .. . 711114
2007/0006019 Al* 12007 Chienccccovvneeenenn. 714/6
2010/0162044 Al* 6/2010 Sim-Tangetal. 714/20
2010/0262755 Al* 10/2010 Beckeretal. 711/103
2014/0006850 Al* 1/2014 Alievetal. 714/6.24
2014/0331083 Al* 112014 Alievetal.ccc..... 714/6.23
OTHER PUBLICATIONS

A. Dholakia et al., “A New Intra-Disk Redundancy Scheme for
High-Reliability RAID Storage Systems in the Presence of Unrecov-
erable Errors,” ACM Transactions on Storage (TOS), May 2008, 42
pages, vol. 4, No. 1, Article 1.

B. Schroeder et al., “Understanding Latent Sector Errors and How to
Protect Against Them,” ACM Transactions on Storage (TOS), Sep.
2010, 23 pages, vol. 6, No. 3, Article 9.

* cited by examiner

Primary Examiner — Daniel McMahon
(74) Attorney, Agent, or Firm — Ryan, Mason & Lewis, LLP

(57) ABSTRACT

Data is obtained at a data storage system. Codewords are
generated from the obtained data. The codewords are com-
puted using a folded code and each codeword comprises
symbols. The codewords are stored on an array of disks
associated with the data storage system in accordance with a
codeword symbol mapping that is specified by at least one
parameter ofthe folded code used to generate each codeword.

19 Claims, 3 Drawing Sheets

10(1) 10(W)
1100
COMMUNICATIONS
MEDIUM
FAYLOAD
DATA
[16
STORAGE SYSTEM
1 ™~
ARRAY
CONTROLLER piook 34(1) [Block 34(2) |plock 34(3)
CODE GENERATOR MODULE }»32
CODEWORDS

14 s

RAID ARRAY
00) 22 0B 204 2005 200
o oy oy ey ey
EIEIEI S
[STRIPE_] [_STRIPE_] [_STRIPE | [STRIPE] [STRIPE | [STRIPE |
y
(1) (2 28(3) 84 805 280

U.S. Patent Jan. 5,2016 Sheet 1 of 3 US 9,229,811 B2
FIG. 1
10(1) '\ [10(M)
HOST HOST / 100

COMMUNICATIONS
MEDIUM

PAYLOAD
DATA
30 16

P e a
ISTORAGE SYSTEW |
| |
| 1t |
| [ARRAY !
| |
| |CONTROLLER 1g 00k 34(1) [BLock 34(2) |BLock 34(3) |
I J |

|
i CODE GENERATOR MODULE - 3) !
| i
I |
| CODEWORDS |
| 4 | i
| [RAID ARRAY |
i 20(1) 20(2) 20(3) 20(4) 20(5) 20(6) i
B P S S G R G G
] ok || bk || oisk || ok || oisk || oisk ||
I e e e Ottt ettt ettt ettt et :
| |
' | [STRiPE | [STRIPE | [STRIPE | [STRIPE | [STRIPE | [STRIPE || !
| |
|)))))) -
o) s 283) () 8e) 286) | |
e !

U.S. Patent Jan. 5,2016 Sheet 2 of 3 US 9,229,811 B2

FIG. 2

1
ARRAY CONTROLLER

40
CONTROLLER
i
PROCESSOR

/,32
CODE GENERATOR MODULE

f

46 !
MEMORY

/r48

PROGRAM CODE

/,42
DATA INTERFACE

f

Iiéiiiv'*120

U.S. Patent Jan. 5,2016 Sheet 3 of 3 US 9,229,811 B2

FIG. 3

300
J

DISK 0 DISK 1 DISK 2 DISK 3 DISK 4 DISK 5

(0) (0) (0) (0) (0) (0)
C C C C C C
L e e T T
C ¢7 Cg Cq C10 11
(1) (1) (1) (1) (1) (1)
C C C C C C
SR |~ T 0 a0 |
C ¢y Cg Cq C10 11
(i) (i) (i) (i) (i) (i)
C C C C C C
STRIPE i |—— L a2 d ! il
AERRREE

US 9,229,811 B2

1
FOLDED CODES FOR CORRECTION OF
LATENT MEDIA ERRORS

FIELD

The field relates generally to data storage systems, and
more particularly to techniques for data encoding in such data
storage systems.

BACKGROUND

The increasing amount of data available in digital format
requires developing appropriate data storage systems. In
many cases, the amount of data to be stored exceeds the
capacity of a single disk drive. Furthermore, the reliability of
a single drive may not be sufficient for a particular applica-
tion. This motivates the development of redundant disk arrays
such as, for example, a Redundant Array of Independent
Disks or RAID. The size of such arrays may vary from a few
disks to a few thousand disks. Such arrays employ some kind
of error/erasure correcting codes, which provide the redun-
dancy needed to recover the data if one or more of the disks
fail.

However, in many cases, a disk remains operational, while
only a few blocks on the disk become unreadable. These
unreadable blocks are typically discovered when some other
disk fails, and the data on remaining disks is being read in
order to re-calculate the data on the failed disk. The need to be
able to cope with such latent media errors is a main rationale
for developing RAID architectures with many parity disks
(e.g., RAID-7.3). However, the need to allocate additional
parity disks significantly increases the cost of data storage
systems.

SUMMARY

Embodiments of the invention provide improved tech-
niques for data encoding in data storage systems.

For example, in one embodiment, a method comprises the
following steps. Data is obtained at a data storage system.
Codewords are generated from the obtained data. The code-
words are computed using a folded code and each codeword
comprises symbols. The codewords are stored on an array of
disks associated with the data storage system in accordance
with a codeword symbol mapping that is specified by at least
one parameter of the folded code used to generate each code-
word.

In another embodiment, a computer program product is
provided which comprises a processor-readable storage
medium having encoded therein executable code of one or
more software programs. The one or more software programs
when executed by a processor implement one or more steps of
the above-described method.

In yet another embodiment, an apparatus comprises a
memory and a processor operatively coupled to the memory
and configured to perform one or more steps of the above-
described method.

In a further embodiment, a data storage system comprises
an array controller operatively coupled to an array of disks.
The array controller is configured to perform one or more
steps of the above-described method.

Advantageously, the use of a folded code in accordance
with one or more embodiments of the invention provides the
ability to avoid data loss when latent media errors are discov-
ered while rebuilding data after one or more disk failures in a
RAID-based data storage system.

10

15

20

25

30

35

40

45

50

55

60

65

2

These and other features and advantages of the present
invention will become more readily apparent from the accom-
panying drawings and the following detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a data storage environment according to
an embodiment of the invention.

FIG. 2 illustrates an array controller according to an
embodiment of the invention.

FIG. 3 illustrates a methodology for mapping codeword
symbols to disks according to an embodiment of the inven-
tion.

DETAILED DESCRIPTION

Embodiments of the present invention will be described
herein with reference to exemplary computing systems, data
storage systems, and associated servers, computers, storage
devices and other processing devices. It is to be appreciated,
however, that embodiments of the invention are not restricted
to use with the particular illustrative system and device con-
figurations shown. Moreover, the phrases “computing sys-
tem,” “processing platform,” “data storage system,” and “data
storage system environment” as used herein with respect to
various embodiments are intended to be broadly construed, so
as to encompass, for example, private or public cloud com-
puting or storage systems, or parts thereof, as well as other
types of systems comprising distributed virtual infrastructure
and those not comprising virtual infrastructure. However, a
given embodiment may more generally comprise any
arrangement of one or more processing devices.

FIG. 1 illustrates an example data storage environment 100
according to an embodiment of the invention. Data storage
environment 100 includes a plurality of hosts 10 (1 through
M), data storage system 30 and communications medium 18.
The storage system 30 includes array controller 12 and RAID
array 14. In one example, the hosts 10 are computing devices
that issue data read/write requests to the data storage system
30 during the execution of application programs (e.g., a data-
base application) on the hosts 10.

Communication medium 18 provides network connections
between the hosts 10 and the data storage system 30. Com-
munications medium 18 may implement a variety of proto-
cols such as Transmission Control Protocol/Internet Protocol
(TCP/IP), User Datagram Protocol (UDP), Asynchronous
Transfer Mode (ATM), Ethernet, Fibre Channel, Small Com-
puter System Interface (SCSI), combinations thereof, and the
like. Furthermore, communications medium 18 may include
various components (e.g., cables, switches/routers, gateways/
bridges, Network Attached Storage/Storage Area Network
(NAS/SAN) appliances/nodes, interfaces, etc.). Moreover,
the communications medium 18 is capable of having a variety
of topologies (e.g., queue manager-and-spoke, ring, back-
bone, multi drop, point to-point, irregular, combinations
thereof, and so on).

Array controller 12 is constructed and arranged to convert
blocks of payload data 16 into various codewords 24 accord-
ing to one or more code generator matrices in code generator
module 32. Array controller 12 is also constructed and
arranged to send codewords 24 to disks 20(1) through 20(6)
of RAID array 14 for storage. In one example, array controller
12 is a server, although in some arrangements, array control-
ler 12 may be a dedicated unit of a server, a personal com-
puter, a laptop computer, or the like. Array controller 12
includes generator module 32.

US 9,229,811 B2

3

Generator module 32 is constructed and arranged to gen-
erate codewords 24 from blocks of payload data 16. More
particularly, generator module 32 encodes a first block 34(1),
a second block 34(2), and a third block 34(3) of payload data
16, including generating parity data for the payload data,
using code generator module 32. In one example, generator
module 32 is software running on the array controller 12,
although in some arrangements, generator module 32 is a
stand-alone piece of hardware, or some combination of hard-
ware and software.

RAID array 14 is constructed and arranged to store code-
words 24 in disks 20(1) through 20(6). It is to be understood
that more or less disks may be employed in the RAID array. It
is to be further understood that in order to implement disk
load balancing, different stripes may employ different map-
pings of codeword symbols to the disks, similar to RAID-5.

During operation, array controller 12 receives payload data
16 over communications medium 18. Payload data 16 is
broken into blocks 34(1), 34(2), 34(3) (blocks 34) of a given
length; in some arrangements, array controller 12 breaks pay-
load data into blocks 34. In turn, generator module 32 takes in
each block, 34(1), 34(2), and 34(3), and respectively applies
a given generator matrix from its one or more generator
matrices to the blocks to create codewords of a given length.
It is to be understood that each codeword is typically com-
prised of information symbols corresponding to payload data
and check symbols corresponding to parity data.

Array controller 12 then sends the generated codewords 24
to RAID array 14 to be stored in particular stripes, 28(1)
through 28(6), in disks 20(1) through 20(6). Thus, in this
example, array controller 12 stores those codewords that have
been encoded by the generator module 32. The array control-
ler 12 stores (or causes to be stored) the codewords in the
RAID array 14 in accordance with a mapping of codeword
symbols to the disks. The code generator module 32, in one
embodiment, implements the codeword symbol mapping
methodology. In an alternative embodiment, a separate map-
ping module may be implemented in the array controller. In
one embodiment, such a mapping methodology is described
below in the context of FIG. 3. Further details of array con-
troller 12 are now described below in the context of FIG. 2.

FIG. 2 illustrates details of an example array controller 12.
Array controller 12 includes controller 40, which in turn
includes processor 44 and memory 46, and data interface 42,
such as a Serial Advanced Technology Attachment (SATA)
interface, a Serial Attached SCSI (SAS) interface, a Fiber
Channel interface, etc.

Memory 46 is configured to store program code 48 that
contains instructions configured to cause processor 44 to
carry out methodologies described herein. For example, for
array controller 12, program code 48 contains instructions for
applying generator matrices to blocks 34 and mapping code-
word symbols to disks 20. Memory 46 may take the form of,
but is not limited to, random access memory, flash memory or
a non-volatile memory.

Processor 44 may take the form of, but is not limited to, one
or more central processing units, one or more microproces-
sors, and a single core or multi-cores each running single or
multiple threads. In some arrangements, processor 44 is one
of several processors working together. Processor 44 is con-
figured to carry out methodologies and algorithms described
herein by executing program code 48. Processor 44 includes
generator module 32, although in some arrangements, gen-
erator module 32 may be a stand-alone hardware module or
software residing in memory. The processor, memory and
data interface shown in FIG. 2 comprise one example of a

10

15

20

25

30

35

40

45

50

55

60

65

4

computing device and/or a processing platform upon which
methodologies described herein can be implemented.

Given the illustrative data storage system described above,
we now describe encoding and codeword symbol mapping
methodologies according to embodiments of the invention.

Let nbe the number of disks in a given data storage system.
Consider a linear block code C of length N=nm and dimen-
sion k over alphabet A, where m is a folding parameter asso-
ciated with a folded code (e.g., a Reed-Solomon folded code).
The phrase “folded code” refers to a code where m consecu-
tive symbols from codewords are grouped together, thus m is
referred to as the folding parameter. Let (¢, ..., ¢y, @) be
a codeword obtained by encoding the i-th chunk of payload
data with this code. In one embodiment, symbol cj(i) is stored
on disk |j/m|, as shown in codeword mapping table 300 of
FIG. 3. Note that the mapping table 300 illustrates a folding
parameter m=2. However, embodiments of the invention are
not limited to this particular folding parameter example. It is
to be understood that, in practice, each codeword symbol may
correspond to a block of data of some fixed size, which
depends on the underlying disk structure (e.g., sector size,
etc.) and performance requirements. Note also that ifk is not
divisible by m, some disks may contain both payload and
parity data within the same stripe.

Assume that the code being used is able to correct t era-
sures. This implies that the encoding and codeword mapping
methodology according to this illustrative embodiment is
able to tolerate up to T disk failures and s block errors, pro-
vided that s+mt=t holds. However, it is to be understood that,
in practice, latent media errors may affect a few neighboring
disk sectors. In order to avoid exceeding the erasure correct-
ing capability of the code being used, in one embodiment,
stripes on disks are interleaved. That is, different pieces of the
codeword are stored at sufficiently distant positions on disk,
e.g., symbols ¢, and c,,,, for example considered in FIG. 3.

It is to be appreciated that a maximum distance separable
code (e.g., Reed-Solomon) is usable as the code for generat-
ing codewords in the above-described methodologies. For
such codes, one obtains t=N-k. It can be shown that the
encoding and codeword mapping methodologies according
to embodiments of the invention achieve a data rate (i.e.
usable capacity) of

A conventional way to cope with latent media errors is to
perform periodically disk scrubbing, i.e., to read the data
periodically, and rebuild it if corrupted blocks are discovered.
This, however, significantly increases the load of the data
storage system, and may degrade its performance. Further-
more, it may take a lot of time to examine all the blocks on all
disks, and during this time some new media errors may
appear. Another conventional approach is to introduce intra-
disk redundancy, i.e., append to a few blocks of data stored on
a disk one or more parity blocks, which are stored on the same
disk. If the disk is a part of RAID, this construction can be
recognized as an instance of a product code of rate p=Rr,
where R is therate of the code used in the design of RAID, and
r is the rate of the intra-disk code. A main drawback of this
conventional approach is that it consumes a significant frac-
tion of disk space for storing parity (check) symbols of the
intra-disk code.

Advantageously, embodiments of the invention, e.g., with
respect to a RAID-based data storage system with n disks,

US 9,229,811 B2

5

enables one to avoid data loss if s latent media errors are
discovered while rebuilding the data after 8 disk failures,
provided that the underlying maximum distance separable
code satisfies k=(n-3)m-s Since, in most cases, the number
of latent media errors per stripe s does not exceed 1, it is
sufficient to set k=(n-3)m-1. In this case, the usable capacity
achieved by the methodologies of embodiments described
herein,

of a classical RAID with K=n-9-1 payload and 8+1 parity,
which canalso survive such failure configuration. It should be
also understood that in the absence of disk failures, this
scheme can provide protection against up to dm+s disk fail-
ures. For example, in an embodiment based on Reed-So-
lomon code with parameters m=2, N-k=5, protection against
2 disk failures and 1 latent media error is provided, or 1 disk
failure and 3 latent media errors, or 5 media errors and no disk
failures. Such an embodiment can be considered as providing
an intermediate RAID level between RAID-6 and RAID-7.3.

While various embodiments of the invention have been
particularly shown and described, it will be understood by
those skilled in the art that various changes in form and details
may be made therein without departing from the spirit and
scope of the invention as defined by the appended claims.

For example, it should be understood that some embodi-
ments are directed to array controller 12, which is constructed
and arranged to store data on a redundant array of disks in a
storage system, each disk of the redundant array of disks
including a disk controller apart from the array controller.
Some embodiments are directed to a process of storing data
on a redundant array of disks having an array controller in a
storage system, each disk of the redundant array of disks
including a disk controller apart from the array controller.
Also, some embodiments are directed to a computer program
product which enables computer logic to store data on a
redundant array of disks having an array controller in a stor-
age system, each disk of the redundant array of disks includ-
ing a disk controller apart from the array controller.

It should also be understood that some embodiments are
directed to array controller 12, which is constructed and
arranged to store data in a redundant disk array that employs
a code which transforms an information vector of information
symbols into a codeword of code symbols. Embodiments are
directed to a process of storing data in a redundant disk array
that employs a code which transforms an information vector
of information symbols into a codeword of code symbols.

In other arrangements, array controller 12 is implemented
by a set of processors or other types of control/processing
circuitry running software. In such arrangements, the soft-
ware instructions can be delivered, within array controller 12,
either in the form of a computer program product 120 (see
FIG. 2) or simply instructions on disk or in pre-loaded in
memory 46 of array controller 12, each computer program
product having a computer readable storage medium which
stores the instructions in a non-volatile manner. Alternative
examples of suitable computer readable storage media

10

15

25

30

35

40

45

50

55

60

6

include tangible articles of manufacture and apparatus such
as CD-ROM, flash memory, disk memory, tape memory, and
the like.

What is claimed is:

1. A method comprising steps of:

obtaining data at a data storage system;

generating codewords from the data, wherein the code-

words are computed using a folded code and each code-
word comprises symbols; and

storing the codewords on an array of disks associated with

the data storage system in accordance with a codeword
symbol mapping that is specified by a folding parameter
used to generate each codeword;

wherein the folded code comprises a set of dimensions

defined as a function of a number of disks in the array of
disks, a number of disk failures tolerated by the folded
code, the folding parameter and a number of latent
media errors per stripe.

2. The method of claim 1, wherein the storing step further
comprises interleaving stripes on the disks of the array of
disks.

3. The method of claim 1, wherein the folded code com-
prises k dimensions such that k=(n-0)m-s, where n is the
total number of disks in the array of disks, 8 is the maximal
number of disk failures tolerated by the folded code, m is the
folding parameter, and s is the number of latent media errors
per stripe.

4. The method of claim 1, wherein the folded code com-
prises a maximum distance separable code.

5. The method of claim 4, wherein the maximum distance
separable code comprises a Reed-Solomon code.

6. The method of claim 1, wherein the symbols of each
codeword comprise information symbols and check symbols.

7. A computer program product comprising a non-transi-
tory processor-readable storage medium having encoded
therein executable code of one or more software programs,
wherein the one or more software programs when executed
by a processor implement the steps of the method of claim 1.

8. An apparatus, comprising:

a memory; and

a processor operatively coupled to the memory and con-

figured to:

obtain data at a data storage system;

generate codewords from the data, wherein the codewords

are computed using a folded code and each codeword
comprises symbols; and

store the codewords on an array of disks associated with the

data storage system in accordance with a codeword sym-
bol mapping that is specified by a folding parameter
used to generate each codeword;

wherein the folded code comprises a set of dimensions

defined as a function of a number of disks in the array of
disks, a number of disk failures tolerated by the folded
code, the folding parameter and a number of latent
media errors per stripe.

9. The apparatus of claim 8, wherein the processor is fur-
ther configured to perform the storing step by interleaving
stripes on the disks of the array of disks.

10. The apparatus of claim 8, wherein the folded code
comprises k dimensions such that k=(n-9)m-s, wheren is the
total number of disks in the array of disks, 8 is the maximal
number of disk failures tolerated by the folded code, m is the
folding parameter, and s is the number of latent media errors
per stripe.

11. The apparatus of claim 8, wherein the folded code
comprises a maximum distance separable code.

US 9,229,811 B2

7

12. The apparatus of claim 11, wherein the maximum
distance separable code comprises a Reed-Solomon code.
13. The apparatus of claim 8, wherein the symbols of each
codeword comprise information symbols and check symbols.

14. A data storage system comprising:

an array controller; and

an array of disks operatively coupled to the array control-
ler;

wherein the array controller is configured to: obtain data;
generate codewords from the data, wherein the code-
words are computed using a folded code and each code-
word comprises symbols; and send the codewords to the
array of disks for storage in accordance with a codeword
symbol mapping that is specified by at least a folding
parameter used to generate each codeword;

wherein the folded code comprises a set of dimensions
defined as a function of a number of disks in the array of
disks, a number of disk failures tolerated by the folded
code, the folding parameter and a number of latent
media errors per stripe.

8

15. The data storage system of claim 14, wherein the stor-
ing step further comprises interleaving stripes on the disks of
the array of disks.

16. The data storage system of claim 14, wherein the folded
code comprises k dimensions such that k=(n-8)m-s, where n
is the total number of disks in the array of disks, d is the
maximal number of disk failures tolerated by the folded code,
m is the folding parameter, and s is the number of latent media
errors per stripe.

17.The data storage system of claim 14, wherein the folded
code comprises a maximum distance separable code.

18. The data storage system of claim 17, wherein the maxi-
mum distance separable code comprises a Reed-Solomon
code.

19. The data storage system of claim 14, wherein the sym-

bols of each codeword comprise information symbols and
check symbols.

